Sains Malaysiana 52(10)(2023): 2999-3011

http://doi.org/10.17576/jsm-2023-5210-20

 

The Analysis Level of Optimism that Influence Investor’s Risk Tolerance in Asset Allocation

(Analisis Tahap Optimisme yang Mempengaruhi Toleransi Risiko Pelabur dalam Peruntukan Saham)

 

SITI NAZIFAH ZAINOL ABIDIN1,2, SAIFUL HAFIZAH JAAMAN2,* & AHMAD SYAFADHLI ABU BAKAR3

 

1Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Negeri Sembilan, Seremban Campus, 70300 Seremban, Negeri Sembilan, Malaysia

2Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Mathematics Division Centre for Foundation Studies in Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

Diserahkan: 12 Jun 2023/Diterima: 10 Oktober 2023

 

Abstract

Investor’s risk of tolerance level has been widely categorized into three types, namely, risk averse, risk seeker and risk neutral. Nevertheless, in assessing the risk of a particular asset, investors that fall under the same risk tolerance classification may have different levels of optimism. It is thus beneficial to complement types of investor’s risk of tolerance with level of optimism. In this study, a fuzzy asset allocation model that satisfy heterogeneous investor’s risk of tolerance with regards to investor’s level of optimism is proposed. Enhancing Fuzzy Inferences System (FIS) with cooperation of optimism level, this study obtains a flexible fuzzy allocation model which is based on heterogeneous types of investor’s risk of tolerance combined with various level of optimism. Empirical evidence on 30 Malaysian shares employing the model developed shows that the proposed model successfully able to differentiate various combinations of investor’s risk of tolerance level and investor’s level of optimism. Furthermore, model is able to determine asset allocation and priority shares for each combination accordingly. In conclusion, it is shown that employing the proposed model allows investor to make beneficial investment decision according to his combined risk tolerance and level of optimism. 

 

Keywords: Fuzzy asset allocation; fuzzy inference system; heterogeneous investor’s risk of tolerance; investor’s level of optimism

 

Abstrak

Tahap toleransi risiko pelabur sering dikategorikan kepada tiga jenis iaitu, kehindaran risiko, pencari risiko dan risiko neutral. Walau bagaimanapun, dalam menilai risiko sesuatu saham tertentu, pelabur yang tergolong dalam pengelasan toleransi risiko yang sama mungkin mempunyai tahap optimisme yang berbeza. Oleh itu, adalah penting untuk melengkapkan jenis toleransi risiko pelabur dengan tahap optimisme. Dalam kajian ini, satu model peruntukan saham kabur yang memenuhi tahap toleransi risiko pelabur yang heterogen berdasarkan tahap optimisme pelabur dicadangkan. Dengan meningkatkan Sistem Penaakulan Kabur (FIS) dengan kerjasama tahap optimisme, kajian ini memperoleh model peruntukan kabur yang fleksibel berdasarkan jenis toleransi risiko pelabur yang berbeza digabungkan dengan pelbagai tahap optimisme. Bukti empirik terhadap 30 saham Malaysia menggunakan model yang dibangunkan menunjukkan bahawa model yang dicadangkan berjaya membezakan pelbagai gabungan tahap toleransi risiko pelabur dan tahap optimisme pelabur. Tambahan pula, model ini mampu menentukan peruntukan saham dan saham keutamaan bagi setiap gabungan. Kesimpulannya, telah ditunjukkan bahawa penggunaan model yang dicadangkan membolehkan pelabur membuat keputusan yang bermanfaat berdasarkan gabungan antara toleransi risiko dan tahap optimisme pelabur. 

 

Kata kunci: Peruntukan saham kabur; sistem penaakulan kabur; toleransi risiko pelabur heterogen; tahap optimisme pelabur

 

RUJUKAN

Ahn, D., Choi, S., Gale, D. & Kariv, S. 2014. Estimating ambiguity aversion in a portfolio choice experiment. Quantitative Economics 5(2): 195-223.

Andani, S.R. 2013. Fuzzy mamdani dalam menentukan tingkat keberhasilan dosen mengajar. Seminar Nasional Informatika, UPN ‘Veteran’ Yogyakarta, 18 Mei.

Bhattacharjee, S. 2017. A comparative analysis of impact of asset allocation on portfolio performance as medium term investments. Journal of Management and Research 11(3/4): 1-15.

Chen, L.H. & Huang, L. 2009. Portfolio optimization of equity mutual funds with fuzzy return rates and risks. Expert Systems with Applications 36(2): 3720-3727.

Febriany, N., Agustina, F. & Marwati, R. 2017. Aplikasi metode fuzzy mamdani dalam penentuan status gizi dan kebutuhan kalori harian balita menggunakan software MATLAB. Jurnal Eureka Matika 5(1): 84-96.

Gong, X., Min, L. & Yu, C. 2022. Multi-period portfolio selection under the coherent fuzzy environment with dynamic risk-tolerance and expected-return levels. Applied Soft Computing 114: 108104.

Huang, X., Jiang, G., Gupta, P. & Mehlawat, M.K. 2021. A risk index model for uncertain portfolio selection with background risk. Computers & Operations Research 2021: 105331.

Jaaman, S.H., Weng, H.L. & Isa, Z. 2013. Risk measures and portfolio construction in different economic scenarios. Sains Malaysiana 42(6): 875-880.

Jouini, E. & Napp, C. 2007. Are more risk averse agents more optimistic? Insights from a rational expectations model. Economics Letters 101(1): 73-76.

Kiliçman, A. & Sivalingam, J. 2010. Portfolio optimization of equity mutual funds: Malaysian case study. Adv. Fuzzy Syst. 2010: 879453.

Kocadağlı, O. & Keskin, R. 2015. A novel portfolio selection model based on fuzzy goal programming with different importance and priorities. Expert Systems with Applications 42(20): 6898-6912.

Lam, W.S., Jaaman, S.H. & Ismail, H. 2015. The impact of human behaviour towards portfolio selection in Malaysia. Procedia-Social and Behavioral Sciences 172: 674-678.

Li, H.Q. & Yi, Z.H. 2019. Portfolio selection with coherent Investor’s expectations under uncertainty. Expert Systems with Applications 133: 49-58.

Lin, P. C., Watada, J., & Wu, B. 2013. Risk assessment of a portfolio selection model based on a fuzzy statistical test. IEICE Transactions on Information and Systems 96(3): 579-588.

Leungo, E.A. 2010. Fuzzy mean-variance portfolio selection problems. Advanced Modelling and Optimization 12(3): 399-410.

Markowitz, H. 1952. Portfolio selection. Journal of Finance 7(1): 77-91.

Mirnoori, S.M. & Shariati, A. 2012. Fuzzy portfolio optimization using Chen and Huang model: Evidence from Iranian mutual funds. Afr. J. Bus. Manag. 6: 6608-6616.

Mohamed, Z., Mohamad, D. & Samat, O. 2009. A fuzzy approach to portfolio selection. Sains Malaysiana 38(6): 895-899.

Mohd Amin, F.A. & Jaaman, S.H. 2023. Pemeringkatan saham patuh syariah menggunakan pembuatan keputusan berbilang-kriterium: TOPSIS dan GRA. Sains Malaysiana 52(6): 1865-1877.

Princy, S. & Dhenakaran, S.S. 2016. Comparison of triangular and trapezoidal fuzzy membership function. Journal of Computer Science and Engineering 2(8): 46-51.

Ramli, N. & Mohamad, D. 2010. Fuzzy Jaccard with degree of optimism ranking index based on function principle approach. Majlesi Journal of Electrical Engineering 4(4): 9-15.

Rinandiyana, L.R., Fahmi, A.N. & Kusnandar, D.L. 2020. Experienced regret dan risk tolerance dalam membentuk perilaku perdagangan saham. Forum Ekonomi22(1): 44-48.

Robiyanto, R. 2018. Performance evaluation of stock price indexes in the Indonesia stock exchange. International Research Journal of Business Studies 10(3): 173-182.

Safdari, C. & Scannell, N.J. 2005. Investment risk profiling utilizing business resource slack. Journal of Business & Economics Research 3(8). https://doi.org/10.19030/jber.v3i8.2794

Shyamal, A.K. & Pal, M. 2007. Triangular fuzzy matrices. Iranian Journal of Fuzzy System 4(1): 75-87.

Sutara, B. & Kuswanto, H. 2019. Analisa perbandingan fuzzy logic metode Tsukamoto, Sugeno, Mamdani dalam penentuan keluarga miskinInfotekmesin 10(2): 75-86.

Turan, H.H., Atmis, M., Kosanoglu, F., Elsawah, S. & Ryan, M.J. 2020. A risk-averse simulation-based approach for a joint optimization of workforce capacity, spare part stocks and scheduling priorities in maintenance planning. Reliability Engineering & System Safety 204: 107199.

Tsaur, R.C. 2013. Fuzzy portfolio model with different investor risk attitudes. European Journal of Operational Research 227(2): 385-390.

Van Staden, P.M., Dang, D.M. & Forsyth, P.A. 2021. The surprising robustness of dynamic mean-variance portfolio optimization to model misspecification errors. European Journal of Operational Research 289(2): 774-792.

Vlad, C. & Surlaru, A.C.P. 2020. Empirical check of the return-risk tandem. Ovidius University Annals, Economic Sciences Series 20(1): 1070-1073.

Wen, F., He, Z. & Chen, X. 2014. Investors’ risk preference characteristics and conditional skewness. Mathematical Problems in Engineering 2014: 814965.

Xing, F.Z., Cambria, E. & Welsch, R.E. 2018. Intelligent asset allocation via market sentiment views. IEEE Computational Intelligence Magazine 13(4): 25-34.

Yao, Z. & Rabbani, A.G. 2021. Association between investment risk tolerance and portfolio risk: The role of confidence level. Journal of Behavioral and Experimental Finance 30: 100482.

Zainol Abidin, S.N., Jaaman, S.H., Ismail, M. & Abu Bakar, A.S. 2020. Clustering stock performance considering investor preferences using a fuzzy inference system. Symmetry 12(7): 1148.

  *Pengarang untuk surat-menyurat; email: shj@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya